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1 Chapter 1

1.1 Weak convergence

Definition 1.1: Weak Convergence

Let (D, d) denote a generic metric space. We say that a D−valued sequence {Xn}∞n=1 converges weakly to X
if, for all bounded continuous f : D 7→ R,

E[f(Xn)] → E[f(X)]

Theorem 1.2: Portmanteau

Let {Xn}∞n=1 denote a sequence of D-valued RVs and X is an RV. Then the following are equivalent:

• Xn ⇝ X

• E[f(Xn)] → E[f(X)] for all bounded, continuous functions

• E[f(Xn)] → E[f(X)] for all bounded, Lipschitz-continuous functions

• limsupnE[f(Xn)] ≤ E[f(X)] for every upper semicontinuous f that is bounded above

• liminfnE[f(Xn)] ≥ E[f(X)] for every lower semicontinuous f that is bounded below

• limsupnP{Xn ∈ F} ≤ P{X ∈ F} for all closed F , where P{Xn ∈ F} := EI{Xn ∈ F}

• liminfnP{Xn ∈ U} ≥ P{X ∈ U} for all open U

Theorem 1.3: Continuous mapping for metric spaces

Let (D, d) and (E, e) be metric spaces. Suppose {Xn}∞n=1 is a sequence of D-valued RVs and X is D0-valued
where D0 ⊆ D. Let f : D 7→ E be continuous on D0. Then Xn ⇝ X implies f(Xn)⇝ f(X).

Lemma 1.4: Partial Slutsky’s for weak convergence

Let X1, ... and Y1, ... be 2 sequences of ℓ∞(F )-valued RVs for some function class F . Suppose ||Xn−Yn||F =
oP (1). Then if Xn ⇝ X in ℓ∞(F ) relative to || · ||F for some ℓ∞(F )-valued RV X, then Yn ⇝ X in ℓ∞(F )
relative to || · ||F .

Definition 1.5: Asymptotically ρ-equicontinuous

Let ρ be a pseudometric on F and, for an δ > 0,
F (δ) = {(f1, f2) ∈ F 2 : ρ(f1, f2) < δ}. Then a stochastic process {Xn}∞n=1 is asymptotically ρ-
equicontinuous if

sup(f1,f2)∈F(δn)|Xn(f1)−Xn(f2)| = oP (1)

for all positive sequences δn → 0

Definition 1.6: Tightness

We say that an ℓ∞(F )-valued RV is tight is ∀ϵ > 0, there exists a compact set K ⊆ ℓ∞(F ) s.t. P (X ∈ K) ≥
1− ϵ
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Theorem 1.7: Equivalent characterization of weak convergence in ℓ∞(F )

Xn converges weakly to a tight random variable X in ℓ∞(F ) if and only if both of the following hold:

1. (Convergence in distribution of marginals): For each finite collection {f1, ..., fk} ⊆ F , it holds that
{Xn(fj) : j = 1, ..., k} ⇒ {X(fj) : j = 1, ..., k}

2. (Existence of a suitable pseudometric): There exists a pseudometric ρ on F s.t. Xn is asymptotically
uniformly ρ-equicontinuous and N(ϵ,F , ρ) <∞ for all ϵ > 0

Lemma 1.8

Let F denote a collection of functions mapping from X 7→ R and Gn := {
√
n(Pn − P )f : f ∈ F}. Then Gn

is ℓ∞(F )-valued when F has a finite and P0-integrable envelope function, F̄ , i.e. supf∈F |f(x)| ≤ F̄ (x)

1.2 P0-Donsker

Definition 1.9: P0-Donsker

We say that F is P0-Donsker if Gn ⇝ G in ℓ∞(F ) for some tight weak limit G.

• If F is P0-Donsker, then G is a mean-zero Gaussian process with covariance function (f1, f2) 7→
E[G(f1)G(f2)] = P0(f1f2)− P0f1P0f2

Remark 1.1. : For a Donsker class, the pseudometric guaranteed to exist by Theorem 1.7 take the form ρ0(f1, f2) =
sd¶0 [f1(x)− f2(x)]

Theorem 1.10: Permanence properties of Donsker classes

• If F and G are Donsker classes, then F + G , −F , and F ∪ G are Donsker classes as well

• Let F1, ...,Fk be P0-Donsker with ||P0||Fj < ∞ for all j and let ϕ : Rk 7→ R be Lipschitz. Then
ϕ ◦ (F1, ...,Fk) is P0-Donsker, provided x 7→ ϕ(f1(x), ..., fk(x)) is P0-square integrable ∀fj ∈ Fj , j ∈
{1, ..., k}

• If F is Donsker, then G ⊆ F is also Donsker

Theorem 1.11: Sufficient conditions for class to be Donsker

A class F of functions with a square integrable envelope function is Donsker if either of the following hold:

• J[](1,F , L2(P0)) <∞ where J[](δ,F , L2(P0)) =
∫ δ
0

√
logN[](ϵ,F , L2(P0))dϵ

•
∫∞
0
supQ

√
logN(ϵ,F , L2(Q)) <∞

Remark 1.2. : If a class is Donsker, it must be Glivenko-Cantelli.

Example 1.1. (Using results for STAT 582):

1. Let F be a class of functions whose total variation is bounded by 1. Then N[](ϵ,F , L2(P )) ≤ K
ϵ . This implies

J[](1,F , L2(P0)) <∞, so F is Donsker.

This also implies the following collections of functions are Donsker:

• all univariate uniformly bounded and monotone functions

• all differentiable univariate functions defined over a bounded region with a uniformly bounded derivative

2. Let F be a collection of indicators for half-lines (−∞, x] for x ∈ R. Then N[](ϵ,F , L2(P )) ≤ 1
ϵ , so F is

Donsker.
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3. Let F be a collection of uniformly bounded and monotone functions. Then N[](ϵ,F , L2(P )) ≤ 1
ϵ , so F is

Donsker.

Example 1.2. (Confidence band of CDF): We are interested in obtaining a point and interval estimate for the
CDF, F0 := P0{x ≤ t}.

Let H = {x 7→ I{x ≤ t} : t ∈ R} and observe {
√
n[Fn(t) − F0(t)] : t ∈ R} = {Gnh : h ∈ H }. Observe also,

H has envelope function x 7→ 1, so Gn is ℓ∞(H )-valued.

From Lemma 10.15 in VdV, we know that supQlogN(ϵ,H , L2(Q)) < ∞, so H is P-Donsker. Then by CMT,
||Gn||H ⇝ ||G||H .

Then it follows that a suitable (1 − α)-level confidence band for F0 is Fn(t) ± c√
n

where c is the (1 − α) quan-

tile of ||G||H

Lemma 1.12: Evaluation of the empirical process on a random function

Let F ⊆ L2(P ) be a P-Donsker class satisfying supf∈FρP (f) < ∞, where ρP : f 7→
√
P (f − Pf)2. Let

h1, ... be a sequence of random functions in L2(P ) such that P (hn ∈ F ) → 1 and P (hn − h0)
2 = oP (1) for

some h0 ∈ F . Then Gn(hn − h0) = oP (1).
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2 Chapter 2

2.1 Asymptotic Linearity

Definition 2.1: Asymptotically linear

An estimator ψn of ψ0 is called asymptotically linear if

ψn − ψ0 =
1

n

n∑
i

ϕP0
(xi) + oP (n

−1/2)

where the influence function, phiP0 , has P0-mean zero and is P0-square integrable

Remark 2.1. If ψn is an asymptotically linear estimator of ψ0, then, by CLT and Slutsky’s Theorem,

√
n(ψn − ψ0)⇝ N(0, σ2

P0
)

where σ2
P0

= P0ϕ
2
P0

Theorem 2.2: Delta Method

Suppose that ψn is an estimator of ψ0 ∈ Rd s.t.

√
n(ψn − ψ0)⇝ N(0,Σ)

Then if f : Rd 7→ R is differentiable

f(ψn)− f(ψ0) = ⟨ψn − ψ0,∇f(ψ0)⟩+ oP (n
−1/2)

Corollary 2.1. (for influence functions): Suppose that ψn is an AL estimator of ψ0 ∈ Rd with influence
function ϕP0

and that f : Rd 7→ R is differentiable. Then f(ψn) is an AL estimator for f(ψ0) with influence
function x 7→ ⟨∇f(ψ0), ϕP0

(x)⟩

Example 2.1. (Sample variance): Suppose we want to estimate σ2
0 = V arP0

(X) with σ2
n = 1

n

∑n
i (xi−

1
n

∑n
i Xi)

2.
Observe σ2

n is an AL estimator for σ2
0 with influence function x 7→ [x− µ0]

2 − σ2
0, where µ0 is the true mean.

Example 2.2. (Z-estimator): Suppose we want to estimate some ψ0 ∈ R, which is the unique solution to P0U(ψ) =
0. An estimator ψn, defined as a solution to PnU(ψ) = 0, is an AL estimator for ψ0 with influence function
x 7→ (− ∂

∂ψP0U(ψ)|ψ=ψ0
)−1U(ψ0)(x).

Example 2.3. (Average absolute deviation from the mean): Suppose we want to estimate
ψ0 :=

∫
|x − EP0

[X]|dP0(x). Let fn(x) = |X − X̄n| and f0(x) = |x − µ0| and consider the estimator ψn := Pnfn.
Observe ψn − ψ0 = (Pn − P0)f0 + P0(fn − f0) + (Pn − P0)(fn − f0).

Note that the first term is linear and Lemma 1.12 can be used to show that (Pn − P0)(fn − f0) = oP (n
−1/2), so

ψn − ψ0 = 1
n

∑n
i (f0 − P0f0) + P0(fn − f0) + oP (n

−1/2)

Then let h(u) =
∫
|x − µ|dP0(x) and note the second term, P0(fn − f0) = h(X̄n) − h(µ0) = 1

n

∑n
i h

′(µ0)(xi −
µ0) + oP (n

−1/2) = 1
n

∑n
i (2F0(µ0)− 1)(xi − µ0) + oP (n

−1/2).

Then it follows that ψn is an AL estimator for ψ0 with influence function x 7→ |x− µ0| −ψ0 + (2F0(µ0)− 1)(x− µ0)

Example 2.4. (Sample coefficient of variation): Suppose we want to estimate c0 = σ0/µ0. We can use the
delta method to show cn = σn/µn is an AL estimator for c0 with influence function x 7→ c0[

1
2 (
x−µ0

σ0
)2 − x

µ0
+ 1

2 ].

Example 2.5. (Sample quantile): Suppose we want to estimate Q0(p), the p
th quantile of P0. We can show that

Qn(p) := inf{y : Fn(y) ≥ p} is an AL estimator for Q0(p) with influence function x 7→ F0(Q0(p))−I(x≤Q0(p))
f0(Q0(p))

.
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2.2 V- and U-Statistics

Definition 2.3: V-Statistics

A V-statistic takes the form

V0(p) := Pm0 H =

∫
...

∫
H(x1, ..., xm)dP (x1)...dP (xm)

Then the resulting plug-in estimator for V0 is

Vn := PnmH =
1

nm

n∑
i1

...

n∑
im

H(xi1 , ..., xim)

Lemma 2.4: Linearization of V-statistic

If H is symmetric, then Vn − V0 = (Pmn − Pm0 )H =
∑m
k

(
m
k

)
(Pn − P0)

kHk, where Hk := Pm−k
0 H.

Note: If H is not symmetric, we can replace it with the average of evaluations of H over permutations of its
arguments.

Corollary 2.2. : We have shown Vn − V0 = m(Pn − P0)H1 +
∑m
k=2

(
m
k

)
(Pn − P0)

kHk. We also know

1.
√
nm(Pn − P0)H1 ⇝ N (0, σ2), where σ2 := m2V arP0

(H1(x))

2.
∑m
k=2

(
m
k

)
(Pn − P0)

kHk = oP (n
−1/2)

So it follows that Vn is an AL estimator for V0 with influence function x 7→ m[H1(x)− V0].

Remark 2.2. Vn is generally a biased estimator for V0.

Definition 2.5: U-statistics

An alternative estimator for V0, is called the U-statistic and takes the form

Un =

(
n

m

)−1 ∑
īm∈Dm,n

H(xi1 , ..., xim)

where Dm,n := {̄im := (i1, ..., im) : 1 ≤ i1 < ..., im ≤ n}

Remark 2.3. Un and Vn are asymptotically equivalent when there is no degeneracy, i.e. τ21 := m2V arP0(H1(x)) > 0

Lemma 2.6: Finite sample variance of a U-statistic

V ar(Un) =
∑m
k

(
n
m

)−1(m
k

)(
n−m
m−k

)
τ2k where τ2k := V ar(Hk(x1, ..., xk))

Theorem 2.7: Asymptotic distribution of 1-degenerate U- and V-statistics

If H is a symmetric kernel with m ≥ 2 and τ22 > τ21 = 0, then

n(Un − V0)⇝
∞∑
k

λk(Z
2
k − 1)

where Z1, ... ∼ N(0, 1) and λ1, ... are the eigenvalues of a certain linear operator.

Under regularity conditions,

n(Vn − V0)⇝
∞∑
k

λkZ
2
k
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2.3 Functional Differentiation

Goal: Derive an ALE for functional, Ψ(P0), by defining some version of the delta method that works for functionals.

Definition 2.8: ρ-continuous

The functional Ψ : P 7→ R is ρ-continuous if ∀ sequences {F1, F2, ...} ⊆ P such that ρ(F̃k − F ) →k→∞ 0 for
some F ,

Ψ(Fn) →k→∞ Ψ(F0)

Theorem 2.9: CMT for functionals

If Ψ is ρ-continuous at F0 and ρ(Fn − F0) →p 0, then Ψ(Fn) →p Ψ(F0)

Definition 2.10: Gateaux differentiability

The functional Ψ : P 7→ R is Gateaux differentiable at F0 in the direction
h ∈ Q(F0) := {c(F − F0) : c ∈ R, F ∈ P} if both hold:

1. the differential Ψ̇(F0, h) :=
d
dϵΨ(F0 + ϵh)|ϵ=0 is well-defined

2. h 7→ Ψ̇(F0, h) is linear (in h)

Remark 2.4. The lack of uniformity over h of the limit defining Gateaux differentiability means that this notion of
differentiability is too weak to prove a functional version of the delta method. However, by applying a third condition,
as below, we get a strong enough notion of differentiability.

Definition 2.11: Hadamard differentiability

The functional Ψ is called Hadamard differentiable relative to ρ on Q(F0) if both hold:

1. Ψ is Gateaux differentiable at F0

2. Let RF0,ϵ(h) :=
Ψ(F0+ϵh)−Ψ(F0)

ϵ − Ψ̇(F0, h). Then for any sequence ϵn → 0 and {h1, ...} ⊆ Q(F0) such
that ρ(hn, h) →n→∞ 0 for some h ∈ Q(F0) and F0 + ϵnhn ∈ P for all n,

limn→∞RF0,ϵn(hn) = 0

or, equivalently, for all compact subsets H of Q(F0),

suph∈H |RF0,ϵ(h)| →ϵ→0 0

Remark 2.5. Often we take ρ(h1, h2) := supx|h1(x)− h2(x)|

Theorem 2.12: Functional delta method

If Ψ is Hadamard differentiable at F0 relative to ρ = || · ||∞, then

Ψ(Fn)−Ψ(F0) = Ψ̇(F0;Fn − F0) + oP (n
−1/2) =

1

n

n∑
i=1

Ψ̇(F0; I{xi ≤ ·} − F0(·)) + oP (n
−1/2)

or, in other words, Ψ(Fn) is an ALE for Ψ(F0) with influence function

x 7→ Ψ̇(F0; I{x ≤ ·} − F0(·))

Note:
∫
g(x)dI{Xi ≤ ·} = g(Xi)
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Theorem 2.13: Integration by parts

Let g : [a, b] 7→ R and h : [a, b] 7→ R be cadlag functions (continuous from the right with limits from the left,
e.g. CDF) with bounded variation. Then∫

(a,b]

g(u)dh(u) +

∫
(a,b]

h(u−)dg(u) = g(b)h(b)− g(a)h(a)

where h(u−) = limv→u−h(v)

If at least one of the 2 functions is continuous then,∫
(a,b]

g(u)dh(u) +

∫
(a,b]

h(u)dg(u) = g(b)h(b)− g(a)h(a)
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3 Chapter 3

Suppose X1, .., Xn ∼ P0 ⊆ M and consider the functional, Ψ : M 7→ R.
Goal: Find a lower bound on the asymptotic variance, v∗0(M ), for an estimator of Ψ0 := Ψ(P0).

Definition 3.1: Index set of submodels

Let H (P0) is an index set for the collection of all smooth (QMD) 1-dimensional parametric submodels of M
centered at P0.

3.1 Tangent Spaces

Definition 3.2: Tangent sets and spaces

• G(P0) := {gh : H (P0)} is called the tangent set, where gh is the score function associated with
submodel, h, evaluated at θ = 0.

– Note that this implies TM (P0) ⊆ L2
0(P0) := {g ∈ L2(P0) : P0g = 0}. When TM (P0) = L2

0(P0), we
call M locally non-parametric at P0.

• The tangent space, TM (P0), is the L2(P0) closure of the linear span of G(P0). In this class, we will
assume G(P0) = TM (P0).

Lemma 3.3: Orthogonality of tangent space

Suppose that a model M for the joint distribution X = (Z, Y ) can be represented as MZ ⊗ MY |Z =
{(PZ , PY |Z) : PZ ∈ MZ , PY |Z ∈ MY |Z}. Then the tangent space of M at P0 ∈ M is given by

TM (P0) = TMZ
(P0)⊗ TMY |Z (P0)

where TMZ
(P0) is the tangent space generated by scores for PZ,0 and TMY |Z (P0) is the tangent space generated

by scores for PY |Z,0

3.2 Gradients

Definition 3.4: Pathwise differentiability and gradients

A parameter Ψ is called pathwise differentiable if there exists some P0-mean zero and square integrable
function D(P0) s.t., ∀h ∈ H (P0),

∂

∂θ
Ψ(Pθ,h)|θ=0 = P0[D(P0)gh]

• We call such a D(P0) a gradient of Ψ at P0 relative to M , and if D(P0) ∈ TM (P0) we call it the
canonical gradient of Ψ at P0 relative to M , and denote it D∗(P0).

Equivalently, a parameter Ψ : M 7→ R is pathwise differentiable at P0 iff there exists a continuous linear
map Ψ̇P0

: L2
0(P0) 7→ R such that for all h ∈ H (P0),

∂
∂θΨ(Pθ,h)|θ=0 = Ψ̇P0

(gh)

Lemma 3.5: Relationship between gradients

1. Let D(P0) be a gradient of Ψ at P0 relative to M . Then for any q(P0) ∈ TM (P0)
⊥, D(P0) + q(P0) is

also a gradient.

2. Let M0 ⊆ M be two models and take P ∈ M . Suppose Ψ : M0 7→ R is pathwise differentiable at P
relative to M0. Then Ψ is also pathwise differentiable at P relative to M and GradM (P ) ⊆ GradM0 .

We can use this lemma to find a gradient for Ψ at P0 relative to M with the following steps

9



1. Take a QMD parametric submodel {Pθ : θ ∈ [0, δ)} ⊆ M with Pθ=0 = P0 and score function g ∈ TM (P0)

2. Compute ∂
∂θΨ(Pθ)|θ=0 and write as P0[D̃(P0)g] for some D̃(P0) ∈ L2(P0)

3. Recenter D̃(P0) to obtain the gradient, D(P0) := x 7→ D̃(P0)(x)− P0D̃(P0)

If we want to show that this gradient is the canonical gradient, we need to show that D(P0) ∈ TM (P0).

• Find a QMD parametric submodel {Pθ : θ ∈ [0, δ)} ⊆ M with Pθ=0 = P0 which has score function D(P0)

If it is not the canonical gradient, we can project D(P0) onto TM (P0), to obtain the canonical gradient

• Find D∗(P ) ∈ TM (P0) such that P0[{D(P0)−D∗(P0)}gh] = 0 for all h ∈ H (P0)

3.3 Derivation of generalized Cramer-Rao (GCR bound)

Equipped with the results from this chapter, we can finally give a a lower bound for the asymptotic variance.

Observe v∗0(M ) ≥ v0(Mh) for any h ∈ H (P0), so then it follows that,

v∗0(M ) ≥ suph∈H (P0)v0(Mh) = suph∈H (P0)

[ ∂∂θΨ(Pθ,h)|θ=0]
2

P0g2h

so if Ψ is pathwise differentiable at P0 relative to M with some gradient, D(P0), then

v∗0(M ) ≥ supg∈TM (P0)
(P0[D(P0)g])

2

P0g2

Then if we replace D(P0) with the canonical gradient, D∗(P0) (by projecting it onto TM ((P0), then by Cauchy-
Schwartz (P0[D

∗(P0)g])
2 = P0(D

∗(P0)
2)P0g

2, so

v∗0(M ) ≥ P0[D
∗(P0)

2]

3.4 Gradients and influence functions

Lemma 3.6: Influence functions as gradients∗

If Ψn is an ALE of Ψ(P0) with influence function ϕP0 , then

ψn is regular at P0 ⇐⇒ Ψ is path differentiable at P0 and ϕP0
is a gradient of Ψ at P0

Implication: To construct a RALE of Ψ(P0), Ψ must be pathwise differentiable at P0 relative to M .

Lemma 3.7: Gradients as influence functions

Under regularity conditions, for a given gradient D(P0) of a pathwise differentiable parameter Ψ,

An ALE with influence function D(P0) exists ⇐⇒ it is possible to estimate D(P0) in an appropriate,
locally uniform sense

These two lemmas taken together with the Central Limit Theorem show that the lower bound of the asymptotic
variance for model M , P0[D

∗(P0)
2], is achievable.

Definition 3.8: Efficient influence functions

A RALE Ψn of Ψ(P0) is called asymptotically efficient if its influence function is D∗(P0), the canonical
gradient of Ψ at P0, which we also call the efficient influence function.
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4 Chapter 4

In this chapter we focus on estimating statistical parameters with local features (density, regression function, etc.). In
these cases, the bias of plug-in estimators are so large that we need to undersmooth (choose a sub-optimal bandwidth)
for the bias to be oP (n

−1/2). This means finding an ALE is not as straightforward. Below are two methods for
obtaining an ALE in these situations.

4.1 Estimating equations framework

Definition 4.1: Estimating equation with nuisance parameter

U(ψ, η) is an estimating equation for ψ0 if

P0U(ψ, η0) = 0 ⇐⇒ ψ = ψ0

In Chapter 2, we showed that if U(ψ, η)(x) is an estimating function for ψ0, then the estimating equations-based
estimator ψn of ψ0 using an estimator ηn of η0 is asymptotically linear with influence function:

−a−1
0 [Pn(U(ψ0, η0) + b0(ηn − η0))]

where a0 = ∂
∂ψP0U(ψ, η0)|ψ=ψ0 and b0 = ∂

∂ηP0U(ψ0, η)|η=η0

Then in this chapter we showed that when the estimating equation is a gradient of ψ at P0, a0 = −1 and b0 = 0, so
the estimating equations-based estimator ψn of ψ0 is asymptotically linear with influence function:

Pn(U(ψ0, η0)) = PnD(P0)

Then the resulting ALE for Ψ(P0) is given the solution in ψ to PnD(ψ, ηn) = 0.

We can use this strategy for any gradient, but it is particularly useful when use the canonical gradient (i.e. the EIF)
because this gives an asymptotically efficient estimator.

Note: We can only use this method when the gradient depends on ψ0, because otherwise it is not an estimating
equation!

4.2 One-step estimation

As previously established, the plug-in estimator will generally have bias that is too large for it to be asymptotically
linear. However, we can characterize this bias and use this to perform a correction to obtain an ALE.

Specifically, we can write

Ψ(P̂n)−Ψ(P0) = (P̂n − P0)D(P̂n) +R(P̂n, P0) = −P0D(P̂n) +R(P̂n, P0)

for a gradient D(P̂n) of Ψ at P̂n in M and a remainder term satisfying R(P̂n,P0)

d(P̂n,P0)
→ 0 as d(P̂n, P0) → 0 for some

discrepancy d on M .
We can then expand the right handside by adding and subtracting PnD(P̂n) and (Pn − P0)D(P0) to obtain

Ψ(P̂n)−Ψ(P0) = (Pn − P0)D(P0) + (Pn − P0)[D(P̂n)−D(P0)] +R(P̂n, P0)− PnD(P̂n)

which implies

Ψ(P̂n) + PnD(P̂n)−Ψ(P0) = (Pn − P0)D(P0) + oP (n
−1/2)

if the following conditions are satisfied:

• R(P̂n, P0) = oP (n
−1/2)

• P0[D(P̂n)−D(P0)]
2 = oP (1)

• there is a fixed P0-Donsker class F such that D(P̂n) ∈ F with probability tending to 1
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5 Appendix

Properties of Hilbert Spaces: Let H0 ⊆ H be a subspace of Hilbert space, H

• The orthogonal complement of H0 is H⊥
0 := {h ∈ H : ⟨h, h0⟩ = 0 ∀h0 ∈ H0}

• The projection of h1 ∈ H onto a closed subspace of H0 is the element of h0 ∈ H0 s.t. h1 − h0 ∈ H⊥
0

Jensen’s Inequality: For RV X and convex function f, f(E[X]) ≤ E[f(X)]

Cauchy-Schwartz Inequality: (
∫
P1(w)P2(w))

2 ≤ (
∫
P 2
1 (w)dw)(

∫
P 2
2 (w)dw)

Layer Cake representation: If Z is a non-negative RV, then E[Z] =
∫∞
0

P(Z ≥ t)dt

Lipschitz Continuity: A function f : X 7→ R is L-Lipschitz continuous if |f(x1) − f(x2)| ≤ L|x1 − x2| for all
x1, x2 ∈ X

12
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