MS Theory Exam Topics 2022

Convergence Theory

Def: Let Fy,..., F,, be the corresponding CDFs of 7y, ..., Z,. For an RV Z with CDF F', we say that Z,
converges in distribution to Z iff lim,,_,.F,(x) = F(x) for every z.
[Note: We can show this by showing lim,,—,.Mx, (t) = Mx ()]

Def: We say that a sequence of RV, Z,,, converges in probability to an RV, Z, iff lim,, . P(|Z, — Z| >
€)=0
Def: We say that a sequence of RV, Z,,, converges almost surely to an RV, Z, iff P(lim, 2, =Z) =1
Continuous Mapping Theorem: For a continuous function g,
X, =4 X = g(X,) 24 g(X) and X,, =P X = g(X,,) =P g(X)
Slutsky’s Theorem: Let X, —4 XY, =P c.
Then (1) X, + Y, =% X +¢, (2) X,,Y;, =% cX, and (3) X,,/Y,, =¢ X,,/c
Markov’s Inequality: Let X be a nonnegative RV.
E[X]

Then for any € > 0, P(X >¢) < ==

Chebyshev’s Inequality: Let X be a RV with finite variance.

Then for any € > 0, P(|X —E(X)| > ¢) < V%Q(X)

Weak LLN: If X1, ..., X,, are distributed iid with finite mean and variance, then X —? E[X}]

Central Limit Theorem: If Xi,.., X, are distributed iid with finite mean and variance, then
Vi) =1 N, 1)

Hoeffding’s Inequality: Let X, ..., X;, be iid RVs such that 0 < X; <1 and let X be the sample average.
Then for any € > 0, P(|X —E(X)| > ¢) < 2e72"¢

Jensen’s Inequality: If X is a RV and f is a convex function, then f(E[X]) < E[f(X)].




Moment Generating Functions

Def: The MGF of a RV X is Mx (t) = E(e!*). Moreover, the j* moment of RV X,

E[X7] = MY (0) = %lt:o
Note: (1) MaX+b<t) = ethX(at) and (2) MX+y(t) = Mx(t)My(t)

Regression & Classification

e For a simple linear regression, the OLS B estimates are defined as

5 _ 5 - 5 Zj(mz*j)(?h*g) (sample)Cov(z,y)
Bo =y — 17 and 31 = Zl(h_iy = (sanzz)ple)Var(a:g
o o? Z m? 2 o? A A —o’%
Where VO/I"(BO) = m7 Va’r(ﬁl) = W, and Cov(ﬁo,ﬁl) =

Zi(ajiiip
e In general § = (XTX) ' XTY and Var(3) = 02(XTX)"!

o To measure how well g(X) predicts Y we use

MSE(g) = E[(Y — g(X))?] = E[g(X) - Y]* + Var(g(X) - Y)

o We can find the ‘best’ classifier ¢(X) fo

for Y (where ‘best’ is defined by some loss function, L(¢(X),Y))
by finding the ¢ which minimizes R(c) =E

[L(e(X), Y]
Other Estimators
Method of Moments estimator: m;(6) = 1 Y, X/ estimates the j* moment of X (i.e. E[X7])
Bayesian estimators
« Posterior mean, 8, = E(0]X1,..., X,,) = [0 -7(0| X1, ..., X,,)d0
o Maximum a posteriori, Oyjap = argmazgm(0| X1, ..., Xn)
where 7(0| X7, ..., X;,) is the posterior distribution of
Empirical Risk Minimization: § = argming+ 3" L(Y;, f3(X;)) for some loss function L(a, b)

Note: Maximum likelihood /least squares estimation is the special case of ERM where

L(Yi, f5(X0) = (Y; = X[ B)?



Sufficient Statistics

Def (SS): (1) T(X) is SS for P if T(X) contains all relevant information that X provides about unknown
Po; (2) T(X) is SS for P if X|T(X) does not depend on

Fisher-Neyman Factorization Theorem: T'(X) is SS wrt B iff the pdf/pmf fy(z) can be factorized as

Helpful Lemmas for SS
e Lemma 11.1: If T(X) is SS wrt the class of pdfs, B, and By C B, then T(X) is also SS wrt Bj.
o Lemma 11.2: If T(X) is SS for (X, B) and S(T'(X)) is SS for (X, Q), then S(T(X)) is also SS for (X, B)

Def (Minimal SS): T*(X) is a minimal SS for B if, for any SS, T'(X), there exists h s.t T*(X) = h(T(X))

Lehmann-Scheffe Theorem: Suppose X ~ {fp(X),0 € Q}. Then T*(X) is minimal SS if it satisfies the
following sufficient condition:

For any z,y,€ X, T*(z) = T*(y) < ;zgzg is f-free

Minimal SS for Special Cases

o Prop 11.48: Let X have pdf fy(z) = [a(0)]"exp{61 >, Ti(x;) + ... + 0 >, Ti(z;) Y117 h(z;). Then
(> Ti(x4), ..y >, Tie(x;)) is minimal SS iff Q = (04, ..., 0x) has dim(k).

o Prop 11.47: Let X be distributed iid with pdf [B(0)]™'Ijg,q)(2)b(x). Then X(;) is minimal SS for 0.

e Prop 11.52: Let X be distributed iid with pdf [B(61,62)]"Ljg, ,)(x)b(x). Then (X(1), X(y)) is minimal
SS for 6.

Def (Ancillary Statistic): A statistic V' = V(X) is an ancillary statistic wrt a distribution family B if the
distribution of V' is -free.

Note: For the location/scale/location-scale family, any statistic which is location/scale/location-scale invariant
is an ancillary statistic.

Def (Complete SS): A statistic T'(X) is complete wrt B if, for any function g,
Eg[g(T(X))] is O-free = ¢(T) is a constant function
which is equivalent to:
Eolg(T(X))] =0=g(T) =0

Helpful Theorems for Complete SS

e Basu’s Theorem: If T is complete and sufficient, T" is independent of any ancillary statistic V.

e Theorem 12.1: If T is complete, then no non-constant function of 7" is ancillary.

e Theorem 12.2: If T is a complete SS, it is also minimal.
Tools for Showing Complete SS

e Prop 12.1: Suppose T = [T1...Tx]" has pdf fo(t1,...,tx) = a(t9)ea:p{2:§c 0;t;}h(t). Thenif (61, ...,0) = Q
contains a k-dimensional rectangle, T is complete.

« Prop 12.3: Suppose X1, ..., X, is an iid sample from the truncation pdf, fo(z) = [B(0)]™ (4,0 (x)b(z).
Then T' = X, is complete.

Tools for Showing an SS is not Complete



o Find ancillary statistic which is not independent of T (Basu’s Theorem)
o Show that T is not minimal (Theorem 12.2)
o Find ¢g(T") which violates definition of complete SS

Def (UMVUE): An unbiased estimator 7 of 7(6) is the UMVUE if it has the smallest variance among all
unbiased estimators of 7(9)

RBLS Theorem: Assume (1) there is an unbiased estimator 7(X) of 7(#) and (2) there is a complete SS,
T =T(X) for . Then 7(T) = E[7(X)|T] is the unique UMVUE for 7(6).

Note: Aside from using RBLS Theorem directly, we can also find the UMVUE for 7(0) via the “UMVUE
Supermarket”: find ¢(T") which is an unbiased estimator of 7(#). This is the UMVUE.



Information Inequality & MLE
Def (FIN): The Fisher Information Number (FIN) of a regular distribution family B is

dlogL(0)
do

d*logL(0)
db?

dlogL(0)

7] = ~Eo| 7o)

1,(0) = Eq|( ] =Vary(

Cramer-Rao Lower Bound: Given statistical family (X, B) and any estimator 7'(X) then

Vary(T(X)) 2 {-E [T (X))} L)

Note: Equality holds iff fy(z) = eA(@)eBOT(@)C (@)
Def (FIM): The Fisher Information Matrix of a regular multivariate distribution family B is
L,(0) = Eg[{Volog fo}{Velog fo}"]

where Volog fo = [azoggf(z) s aloggz(r)]T c Rk

8%logfo(x
Note: [I;(0)];; = —EO[#ZE)]

Cramer-Rao Lower Bound (Multivariate):

Varg(T(X)) = {VeE[T(X)]} L(6) " {VeE[T(X)]}

Def (MLE): The MLE is defined as 6 = argmazg fo(x)

Fisher-Cramer Theorem: 0 is consistent and asymptotically attaining CR-LB
= Vn(l—0) >* N0, L, (6) ")

Remark: By invariance of the MLE, delta method, and continuous mapping theorem,

Va(r(6) —7(8)) =" N(O, [/ (0)* L, (60) )



Hypothesis Testing
Def (Neyman-Pearson Criterion):

1. Power function: The power function is the probability of rejecting the null hypothesis using test ¢,
given 6 is the true parameter

I14(0) == Eq[¢(X)]
2. Size: The size of test ¢ is the worst potential Type I error rate of all § € Qg

supoeay {1y (0)} = suppea {E[$(X)]}

3. Lewvel: A test ¢ has level « if its size is less than or equal to «

4. Uniformly most powerful (UMP): A test is UMP level v if it is the test with smallest Type IT error/highest
power among all level « tests

H¢(0) = Sup¢/,leq;ela{n¢’ (6)} for all 0 € Ql
Two-point Test (Hy : 6 = 0p; Hy : 6 = 6,)

e Neyman-Pearson Theorem: The most powerful level « test for the two-point hypothesis is

_ filz) .
B b Me) = fo(z) g
) = 0, Az) <c
o(x) Ax)

where ¢ and 6(z) are chosen s.t. Ey,[¢(X)] = a.
One-sided Test (Hy: 0 = 6y; Hy : 0 > 0y or Hy : 0 < 6y; Hy : 6 > 6)
o UMP Ezistence Theorem: If fo(-) is MLR in T, then the UMP level « test for a one-sided hypothesis is
1, t>cq
Px) =140, t<cq
da

t=cq

where ¢, and d, are chosen s.t. Eg,[¢(T)] = .

Note: fp(-) is MLR in some 7' = T'(z) if ;Zlgz) = ¢g(T'(x)) increases with T for all 6y < 6y € Q.
0

)

Two-sided Test (Hy : 6 € Qo; Hy : 6 € Q1 = Q/Qg) Note: Be sure to plug in the MLE estimates to calculate
A(z)

e If Qp and ; are uniformly or pointwise separated, the recommended test is

~ fe, (@)
o(z) = 1, Az) = 7o, (@) <1
0, Az)>1

o If Q0,2 € RP, dim(Q) = k —r and dim(Qg) = k — r — s then the recommended level a test is

(]5(.1‘) _ {17 - 2109)\(1’) < X?,l—a

0, —2logA(z) > X314

because, by Wilk’s Theorem, —2log\(z) —% x? under the null hypothesis.
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