MS Theory Exam Topics 2022

Convergence Theory

Def: Let $F_1, ..., F_n$ be the corresponding CDFs of $Z_1, ..., Z_n$. For an RV Z with CDF F, we say that Z_n converges in distribution to Z iff $\lim_{n\to\infty} F_n(x) = F(x)$ for every x. [Note: We can show this by showing $\lim_{n\to\infty} M_{X_n}(t) = M_X(t)$]

Def: We say that a sequence of RV, Z_n , converges in probability to an RV, Z, iff $\lim_{n\to\infty} P(|Z_n - Z| > \epsilon) = 0$

Def: We say that a sequence of RV, Z_n , converges almost surely to an RV, Z, iff $P(lim_{n\to\infty}Z_n = Z) = 1$

Continuous Mapping Theorem: For a continuous function g,

 $X_n \to^d X \Rightarrow g(X_n) \to^d g(X) \text{ and } X_n \to^p X \Rightarrow g(X_n) \to^p g(X)$

Slutsky's Theorem: Let $X_n \to^d X$, $Y_n \to^p c$.

Then (1) $X_n + Y_n \rightarrow^d X + c$, (2) $X_n Y_n \rightarrow^d cX$, and (3) $X_n/Y_n \rightarrow^d X_n/c$

Markov's Inequality: Let X be a nonnegative RV.

Then for any $\epsilon > 0$, $P(X \ge \epsilon) \le \frac{\mathbb{E}[X]}{\epsilon}$

Chebyshev's Inequality: Let X be a RV with finite variance.

Then for any $\epsilon > 0$, $P(|X - \mathbb{E}(X)| \ge \epsilon) \le \frac{Var(X)}{\epsilon^2}$

Weak LLN: If $X_1, ..., X_n$ are distributed iid with finite mean and variance, then $\bar{X} \to^p \mathbb{E}[X_1]$

Central Limit Theorem: If $X_1, ..., X_n$ are distributed iid with finite mean and variance, then $\sqrt{n}(\frac{\bar{X} - \mathbb{E}[X_1]}{Var(X_1)}) \rightarrow^d N(0, 1)$

Hoeffding's Inequality: Let $X_1, ..., X_n$ be iid RVs such that $0 \le X_1 \le 1$ and let \overline{X} be the sample average. Then for any $\epsilon > 0$, $P(|\overline{X} - \mathbb{E}(\overline{X})| \ge \epsilon) \le 2e^{-2n\epsilon^2}$

Jensen's Inequality: If X is a RV and f is a convex function, then $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$.

Moment Generating Functions

Def: The MGF of a RV X is $M_X(t) = \mathbb{E}(e^{tX})$. Moreover, the j^{th} moment of RV X,

$$\mathbb{E}[X^{j}] = M_{X}^{(j)}(0) = \frac{d^{j}M_{X}(t)}{dt^{j}}|_{t=0}$$

Note: (1) $M_{aX+b}(t) = e^{bt}M_X(at)$ and (2) $M_{X+Y}(t) = M_X(t)M_Y(t)$

Regression & Classification

• For a simple linear regression, the OLS $\hat{\beta}$ estimates are defined as

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x} \text{ and } \hat{\beta}_{1} = \frac{\sum_{i}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i} (x_{i} - \bar{x})^{2}} = \frac{(sample)Cov(x,y)}{(sample)Var(x)}$$

where $Var(\hat{\beta}_{0}) = \frac{\sigma^{2} \sum_{i} x_{i}^{2}}{n \sum_{i} (x_{i} - \bar{x})^{2}}, Var(\hat{\beta}_{1}) = \frac{\sigma^{2}}{\sum_{i} (x_{i} - \bar{x})^{2}}, \text{ and } Cov(\hat{\beta}_{0}, \hat{\beta}_{1}) = \frac{-\sigma^{2}\bar{x}}{\sum_{i} (x_{i} - \bar{x})^{2}}$

- In general $\hat{\beta} = (X^T X)^{-1} X^T Y$ and $Var(\hat{\beta}) = \sigma^2 (X^T X)^{-1}$
- To measure how well g(X) predicts Y we use

$$MSE(g) = \mathbb{E}[(Y - g(X))^2] = \mathbb{E}[g(X) - Y]^2 + Var(g(X) - Y)$$

• We can find the 'best' classifier c(X) for Y (where 'best' is defined by some loss function, L(c(X), Y)) by finding the c which minimizes $R(c) = \mathbb{E}[L(c(X), Y)]$.

Other Estimators

Method of Moments estimator: $\hat{m}_j(\theta) = \frac{1}{n} \sum_i X_i^j$ estimates the j^{th} moment of X (i.e. $\mathbb{E}[X^j]$) Bayesian estimators

- Posterior mean, $\hat{\theta}_{\pi} = \mathbb{E}(\theta | X_1, ..., X_n) = \int \theta \cdot \pi(\theta | X_1, ..., X_n) d\theta$
- Maximum a posteriori, $\hat{\theta}_{MAP} = argmax_{\theta}\pi(\theta|X_1,...,X_n)$

where $\pi(\theta|X_1, ..., X_n)$ is the posterior distribution of θ

Empirical Risk Minimization: $\hat{\theta} = argmin_{\beta} \frac{1}{n} \sum_{i=1}^{n} L(Y_i, f_{\beta}(X_i))$ for some loss function L(a, b)*Note*: Maximum likelihood/least squares estimation is the special case of ERM where

$$L(Y_i, f_\beta(X_i)) = (Y_i - X_i^T \beta)^2$$

Sufficient Statistics

Def (SS): (1) T(X) is SS for \mathcal{P} if T(X) contains all relevant information that X provides about unknown \mathcal{P}_{θ} ; (2) T(X) is SS for \mathcal{P} if X|T(X) does not depend on θ

Fisher-Neyman Factorization Theorem: T(X) is SS wrt \mathcal{B} iff the pdf/pmf $f_{\theta}(x)$ can be factorized as

$$f_{\theta}(x) = g_{\theta}(T(x))h(x)$$

Helpful Lemmas for SS

- Lemma 11.1: If T(X) is SS wrt the class of pdfs, \mathcal{B} , and $\mathcal{B}_1 \subset \mathcal{B}$, then T(X) is also SS wrt \mathcal{B}_1 .
- Lemma 11.2: If T(X) is SS for (X, \mathcal{B}) and S(T(X)) is SS for (X, \mathcal{Q}) , then S(T(X)) is also SS for (X, \mathcal{B})

Def (Minimal SS): $T^*(X)$ is a minimal SS for \mathcal{B} if, for any SS, T(X), there exists h s.t $T^*(X) = h(T(X))$

Lehmann-Scheffe Theorem: Suppose $X \sim \{f_{\theta}(X), \theta \in \Omega\}$. Then $T^*(X)$ is minimal SS if it satisfies the following sufficient condition:

For any
$$x, y, \in X$$
, $T^*(x) = T^*(y) \iff \frac{f_{\theta}(y)}{f_{\theta}(x)}$ is θ -free

Minimal SS for Special Cases

- Prop 11.48: Let X have pdf $f_{\theta}(x) = [a(\theta)]^n exp\{\theta_1 \sum_i T_1(x_i) + ... + \theta_k \sum_i T_k(x_i)\} \prod_i^n h(x_i)$. Then $(\sum_i T_1(x_i), ..., \sum_i T_k(x_i))$ is minimal SS iff $\Omega = (\theta_1, ..., \theta_k)$ has dim(k).
- Prop 11.47: Let X be distributed iid with pdf $[B(\theta)]^{-1}\mathbb{I}_{[\theta,a)}(x)b(x)$. Then $X_{(1)}$ is minimal SS for θ .
- Prop 11.52: Let X be distributed iid with pdf $[B(\theta_1, \theta_2)]^{-1} \mathbb{I}_{[\theta_1, \theta_2]}(x) b(x)$. Then $(X_{(1)}, X_{(n)})$ is minimal SS for θ .

Def (Ancillary Statistic): A statistic V = V(X) is an ancillary statistic wrt a distribution family \mathcal{B} if the distribution of V is θ -free.

Note: For the location/scale/location-scale family, any statistic which is location/scale/location-scale invariant is an ancillary statistic.

Def (Complete SS): A statistic T(X) is complete wrt \mathcal{B} if, for any function g,

 $\mathbb{E}_{\theta}[g(T(X))]$ is θ -free $\Rightarrow g(T)$ is a constant function

which is equivalent to:

$$\mathbb{E}_{\theta}[g(T(X))] = 0 \Rightarrow g(T) = 0$$

Helpful Theorems for Complete SS

- Basu's Theorem: If T is complete and sufficient, T is independent of any ancillary statistic V.
- Theorem 12.1: If T is complete, then no non-constant function of T is ancillary.
- Theorem 12.2: If T is a complete SS, it is also minimal.

Tools for Showing Complete SS

- Prop 12.1: Suppose $T = [T_1...T_k]^T$ has pdf $f_{\theta}(t_1,...,t_k) = a(\theta)exp\{\sum_j^k \theta_j t_j\}h(t)$. Then if $(\theta_1,...,\theta_k) = \Omega$ contains a k-dimensional rectangle, T is complete.
- Prop 12.3: Suppose $X_1, ..., X_n$ is an iid sample from the truncation pdf, $f_{\theta}(x) = [B(\theta)]^{-1} \mathbb{I}_{(a,\theta]}(x) b(x)$. Then $T = X_{(n)}$ is complete.

Tools for Showing an SS is not Complete

- Find ancillary statistic which is not independent of T (Basu's Theorem)
- Show that T is not minimal (Theorem 12.2)
- Find g(T) which violates definition of complete SS

Def (UMVUE): An unbiased estimator $\hat{\tau}$ of $\tau(\theta)$ is the UMVUE if it has the smallest variance among all unbiased estimators of $\tau(\theta)$

RBLS Theorem: Assume (1) there is an unbiased estimator $\tilde{\tau}(X)$ of $\tau(\theta)$ and (2) there is a complete SS, T = T(X) for θ . Then $\hat{\tau}(T) = \mathbb{E}[\tilde{\tau}(X)|T]$ is the unique UMVUE for $\tau(\theta)$.

Note: Aside from using RBLS Theorem directly, we can also find the UMVUE for $\tau(\theta)$ via the "UMVUE Supermarket": find $\phi(T)$ which is an unbiased estimator of $\tau(\theta)$. This is the UMVUE.

Information Inequality & MLE

Def (FIN): The Fisher Information Number (FIN) of a regular distribution family \mathcal{B} is

$$I_x(\theta) = \mathbb{E}_{\theta}\left[\left(\frac{dlog\mathcal{L}(\theta)}{d\theta}\right)^2\right] = -\mathbb{E}_{\theta}\left[\frac{d^2log\mathcal{L}(\theta)}{d\theta^2}\right] = Var_{\theta}\left(\frac{dlog\mathcal{L}(\theta)}{d\theta}\right)$$

Cramer-Rao Lower Bound: Given statistical family (X, \mathcal{B}) and any estimator T(X) then

$$Var_{\theta}(T(X)) \ge \{\frac{d}{d\theta}\mathbb{E}_{\theta}[T(X)]\}^2 / I_x(\theta)$$

Note: Equality holds iff $f_{\theta}(x) = e^{A(\theta)} e^{B(\theta)T(x)} e^{C(x)}$

Def (FIM): The Fisher Information Matrix of a regular multivariate distribution family $\mathcal B$ is

$$I_x(\theta) = \mathbb{E}_{\theta}[\{\nabla_{\theta} log f_{\theta}\}\{\nabla_{\theta} log f_{\theta}\}^T]$$

where $\nabla_{\theta} log f_{\theta} = \left[\frac{\partial log f_{\theta}(x)}{\partial \theta_{1}}, ..., \frac{\partial log f_{\theta}(x)}{\partial \theta_{k}}\right]^{T} \in \mathbb{R}^{k}$ Note: $[I_{x}(\theta)]_{ij} = -\mathbb{E}_{\theta}\left[\frac{\partial^{2} log f_{\theta}(x)}{\partial \theta_{i} \partial \theta_{j}}\right]$

Cramer-Rao Lower Bound (Multivariate):

$$Var_{\theta}(T(X)) \ge \{\nabla_{\theta} \mathbb{E}[T(X)]\}^T I_x(\theta)^{-1} \{\nabla_{\theta} \mathbb{E}[T(X)]\}$$

Def (MLE): The MLE is defined as $\hat{\theta} = argmax_{\theta}f_{\theta}(x)$

Fisher-Cramer Theorem: $\hat{\theta}$ is consistent and asymptotically attaining CR-LB

$$\iff \sqrt{n}(\hat{\theta} - \theta) \rightarrow^d N(0, I_{x_i}(\theta_0)^{-1})$$

Remark: By invariance of the MLE, delta method, and continuous mapping theorem,

$$\sqrt{n}(\tau(\hat{\theta}) - \tau(\theta)) \rightarrow^d N(0, [\tau'(\theta)]^2 I_{x_i}(\theta_0)^{-1})$$

Hypothesis Testing

Def (Neyman-Pearson Criterion):

1. Power function: The power function is the probability of rejecting the null hypothesis using test ϕ , given θ is the true parameter

$$\Pi_{\phi}(\theta) := \mathbb{E}_{\theta}[\phi(X)]$$

2. Size: The size of test ϕ is the worst potential Type I error rate of all $\theta \in \Omega_0$

$$\sup_{\theta \in \Omega_0} \{ \Pi_{\phi}(\theta) \} = \sup_{\theta \in \Omega_0} \{ \mathbb{E}[\phi(X)] \}$$

- 3. Level: A test ϕ has level α if its size is less than or equal to α
- 4. Uniformly most powerful (UMP): A test is UMP level α if it is the test with smallest Type II error/highest power among all level α tests

$$\Pi_{\phi}(\theta) = \sup_{\phi', level\alpha} \{\Pi_{\phi'}(\theta)\} \text{ for all } \theta \in \Omega_1$$

Two-point Test $(H_0: \theta = \theta_0; H_1: \theta = \theta_1)$

• Neyman-Pearson Theorem: The most powerful level α test for the two-point hypothesis is

$$\phi(x) = \begin{cases} 1, & \lambda(x) = \frac{f_1(x)}{f_0(x)} > c \\ 0, & \lambda(x) < c \\ \delta(x) & \lambda(x) \end{cases}$$

where c and $\delta(x)$ are chosen s.t. $\mathbb{E}_{\theta_0}[\phi(X)] = \alpha$.

One-sided Test $(H_0: \theta = \theta_0; H_1: \theta > \theta_0 \text{ or } H_0: \theta \le \theta_0; H_1: \theta > \theta_0)$

• UMP Existence Theorem: If $f_{\theta}(\cdot)$ is MLR in T, then the UMP level α test for a one-sided hypothesis is

$$\phi(x) = \begin{cases} 1, & t > c_{\alpha} \\ 0, & t < c_{\alpha} \\ \delta_{\alpha} & t = c_{\alpha} \end{cases}$$

where c_{α} and δ_{α} are chosen s.t. $\mathbb{E}_{\theta_0}[\phi(T)] = \alpha$.

Note: $f_{\theta}(\cdot)$ is MLR in some T = T(x) if $\frac{f_{\theta_1}(x)}{f_{\theta_0}(x)} = g(T(x))$ increases with T for all $\theta_0 < \theta_1 \in \Omega$.

Two-sided Test $(H_0 : \theta \in \Omega_0; H_1 : \theta \in \Omega_1 = \Omega/\Omega_0)$ *Note*: Be sure to plug in the MLE estimates to calculate $\lambda(x)$

• If Ω_0 and Ω_1 are uniformly or pointwise separated, the recommended test is

$$\phi(x) = \begin{cases} 1, & \lambda(x) = \frac{f_{\hat{\theta}_0}(x)}{f_{\hat{\theta}_1}(x)} < 1\\ 0, & \lambda(x) \ge 1 \end{cases}$$

• If $\Omega_0, \Omega \in \mathbb{R}^p$, $dim(\Omega) = k - r$ and $dim(\Omega_0) = k - r - s$ then the recommended level α test is

$$\phi(x) = \begin{cases} 1, & -2log\lambda(x) < \chi^2_{s,1-\alpha} \\ 0, & -2log\lambda(x) > \chi^2_{s,1-\alpha} \end{cases}$$

because, by Wilk's Theorem, $-2log\lambda(x) \rightarrow^d \chi^2_s$ under the null hypothesis.