
MS Theory Exam Topics 2022

Convergence Theory
Def : Let F1, ..., Fn be the corresponding CDFs of Z1, ..., Zn. For an RV Z with CDF F , we say that Zn
converges in distribution to Z iff limn→∞Fn(x) = F (x) for every x.
[Note: We can show this by showing limn→∞MXn(t) = MX(t)]

Def : We say that a sequence of RV, Zn, converges in probability to an RV, Z, iff limn→∞P (|Zn − Z| >
ε) = 0

Def : We say that a sequence of RV, Zn, converges almost surely to an RV, Z, iff P (limn→∞Zn = Z) = 1

Continuous Mapping Theorem: For a continuous function g,

Xn →d X ⇒ g(Xn)→d g(X) and Xn →p X ⇒ g(Xn)→p g(X)

Slutsky’s Theorem: Let Xn →d X, Yn →p c.

Then (1) Xn + Yn →d X + c, (2) XnYn →d cX, and (3) Xn/Yn →d Xn/c

Markov’s Inequality: Let X be a nonnegative RV.

Then for any ε > 0, P (X ≥ ε) ≤ E[X]
ε

Chebyshev’s Inequality: Let X be a RV with finite variance.

Then for any ε > 0, P (|X − E(X)| ≥ ε) ≤ V ar(X)
ε2

Weak LLN: If X1, ..., Xn are distributed iid with finite mean and variance, then X̄ →p E[X1]

Central Limit Theorem: If X1, ..., Xn are distributed iid with finite mean and variance, then√
n( X̄−E[X1]

V ar(X1) )→d N(0, 1)

Hoeffding’s Inequality: Let X1, ..., Xn be iid RVs such that 0 ≤ X1 ≤ 1 and let X̄ be the sample average.
Then for any ε > 0, P (|X̄ − E(X̄)| ≥ ε) ≤ 2e−2nε2

Jensen’s Inequality: If X is a RV and f is a convex function, then f(E[X]) ≤ E[f(X)].
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Moment Generating Functions
Def : The MGF of a RV X is MX(t) = E(etX). Moreover, the jth moment of RV X,

E[Xj ] = M
(j)
X (0) = djMX(t)

dtj
|t=0

Note: (1) MaX+b(t) = ebtMX(at) and (2) MX+Y (t) = MX(t)MY (t)

Regression & Classification
• For a simple linear regression, the OLS β̂ estimates are defined as

β̂0 = ȳ − β̂1x̄ and β̂1 =
∑n

i
(xi−x̄)(yi−ȳ)∑
i
(xi−x̄)2 = (sample)Cov(x,y)

(sample)V ar(x)

where V ar(β̂0) = σ2
∑

i
x2
i

n
∑

i
(xi−x̄)2 , V ar(β̂1) = σ2∑

i
(xi−x̄)2 , and Cov(β̂0, β̂1) = −σ2x̄∑

i
(xi−x̄)2

• In general β̂ = (XTX)−1XTY and V ar(β̂) = σ2(XTX)−1

• To measure how well g(X) predicts Y we use

MSE(g) = E[(Y − g(X))2] = E[g(X)− Y ]2 + V ar(g(X)− Y )

• We can find the ‘best’ classifier c(X) for Y (where ‘best’ is defined by some loss function, L(c(X), Y ))
by finding the c which minimizes R(c) = E[L(c(X), Y )].

Other Estimators
Method of Moments estimator: m̂j(θ) = 1

n

∑
iX

j
i estimates the jth moment of X (i.e. E[Xj ])

Bayesian estimators

• Posterior mean, θ̂π = E(θ|X1, ..., Xn) =
∫
θ · π(θ|X1, ..., Xn)dθ

• Maximum a posteriori, θ̂MAP = argmaxθπ(θ|X1, ..., Xn)

where π(θ|X1, ..., Xn) is the posterior distribution of θ

Empirical Risk Minimization: θ̂ = argminβ
1
n

∑n
i L(Yi, fβ(Xi)) for some loss function L(a, b)

Note: Maximum likelihood/least squares estimation is the special case of ERM where

L(Yi, fβ(Xi)) = (Yi −XT
i β)2
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Sufficient Statistics
Def (SS): (1) T (X) is SS for P if T (X) contains all relevant information that X provides about unknown
Pθ; (2) T (X) is SS for P if X|T (X) does not depend on θ

Fisher-Neyman Factorization Theorem: T (X) is SS wrt B iff the pdf/pmf fθ(x) can be factorized as

fθ(x) = gθ(T (x))h(x)

Helpful Lemmas for SS

• Lemma 11.1 : If T (X) is SS wrt the class of pdfs, B, and B1 ⊂ B, then T (X) is also SS wrt B1.

• Lemma 11.2 : If T (X) is SS for (X,B) and S(T (X)) is SS for (X,Q), then S(T (X)) is also SS for (X,B)

Def (Minimal SS): T ∗(X) is a minimal SS for B if, for any SS, T (X), there exists h s.t T ∗(X) = h(T (X))

Lehmann-Scheffe Theorem: Suppose X ∼ {fθ(X), θ ∈ Ω}. Then T ∗(X) is minimal SS if it satisfies the
following sufficient condition:

For any x, y,∈ X, T ∗(x) = T ∗(y) ⇐⇒ fθ(y)
fθ(x) is θ-free

Minimal SS for Special Cases

• Prop 11.48 : Let X have pdf fθ(x) = [a(θ)]nexp{θ1
∑
i T1(xi) + ... + θk

∑
i Tk(xi)}Πn

i h(xi). Then
(
∑
i T1(xi), ...,

∑
i Tk(xi)) is minimal SS iff Ω = (θ1, ..., θk) has dim(k).

• Prop 11.47 : Let X be distributed iid with pdf [B(θ)]−1I[θ,a)(x)b(x). Then X(1) is minimal SS for θ.

• Prop 11.52 : Let X be distributed iid with pdf [B(θ1, θ2)]−1I[θ1,θ2](x)b(x). Then (X(1), X(n)) is minimal
SS for θ.

Def (Ancillary Statistic): A statistic V = V (X) is an ancillary statistic wrt a distribution family B if the
distribution of V is θ-free.

Note: For the location/scale/location-scale family, any statistic which is location/scale/location-scale invariant
is an ancillary statistic.

Def (Complete SS): A statistic T (X) is complete wrt B if, for any function g,

Eθ[g(T (X))] is θ-free ⇒ g(T ) is a constant function

which is equivalent to:

Eθ[g(T (X))] = 0⇒ g(T ) = 0

Helpful Theorems for Complete SS

• Basu’s Theorem: If T is complete and sufficient, T is independent of any ancillary statistic V .

• Theorem 12.1 : If T is complete, then no non-constant function of T is ancillary.

• Theorem 12.2 : If T is a complete SS, it is also minimal.

Tools for Showing Complete SS

• Prop 12.1 : Suppose T = [T1...Tk]T has pdf fθ(t1, ..., tk) = a(θ)exp{
∑k
j θjtj}h(t). Then if (θ1, ..., θk) = Ω

contains a k-dimensional rectangle, T is complete.

• Prop 12.3 : Suppose X1, ..., Xn is an iid sample from the truncation pdf, fθ(x) = [B(θ)]−1I(a,θ](x)b(x).
Then T = X(n) is complete.

Tools for Showing an SS is not Complete
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• Find ancillary statistic which is not independent of T (Basu’s Theorem)

• Show that T is not minimal (Theorem 12.2)

• Find g(T ) which violates definition of complete SS

Def (UMVUE): An unbiased estimator τ̂ of τ(θ) is the UMVUE if it has the smallest variance among all
unbiased estimators of τ(θ)

RBLS Theorem: Assume (1) there is an unbiased estimator τ̃(X) of τ(θ) and (2) there is a complete SS,
T = T (X) for θ. Then τ̂(T ) = E[τ̃(X)|T ] is the unique UMVUE for τ(θ).

Note: Aside from using RBLS Theorem directly, we can also find the UMVUE for τ(θ) via the “UMVUE
Supermarket”: find φ(T ) which is an unbiased estimator of τ(θ). This is the UMVUE.

4



Information Inequality & MLE
Def (FIN): The Fisher Information Number (FIN) of a regular distribution family B is

Ix(θ) = Eθ[(
dlogL(θ)

dθ
)2] = −Eθ[

d2logL(θ)
dθ2 ] = V arθ(

dlogL(θ)
dθ

)

Cramer-Rao Lower Bound: Given statistical family (X,B) and any estimator T (X) then

V arθ(T (X)) ≥ { d
dθ

Eθ[T (X)]}2/Ix(θ)

Note: Equality holds iff fθ(x) = eA(θ)eB(θ)T (x)eC(x)

Def (FIM): The Fisher Information Matrix of a regular multivariate distribution family B is

Ix(θ) = Eθ[{∇θlogfθ}{∇θlogfθ}T ]

where ∇θlogfθ = [∂logfθ(x)
∂θ1

, ..., ∂logfθ(x)
∂θk

]T ∈ Rk

Note: [Ix(θ)]ij = −Eθ[∂
2logfθ(x)
∂θi∂θj

]

Cramer-Rao Lower Bound (Multivariate):

V arθ(T (X)) ≥ {∇θE[T (X)]}T Ix(θ)−1{∇θE[T (X)]}

Def (MLE): The MLE is defined as θ̂ = argmaxθfθ(x)

Fisher-Cramer Theorem: θ̂ is consistent and asymptotically attaining CR-LB

⇐⇒
√
n(θ̂ − θ)→d N(0, Ixi(θ0)−1)

Remark: By invariance of the MLE, delta method, and continuous mapping theorem,

√
n(τ(θ̂)− τ(θ))→d N(0, [τ ′(θ)]2Ixi(θ0)−1)
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Hypothesis Testing
Def (Neyman-Pearson Criterion):

1. Power function: The power function is the probability of rejecting the null hypothesis using test φ,
given θ is the true parameter

Πφ(θ) := Eθ[φ(X)]

2. Size: The size of test φ is the worst potential Type I error rate of all θ ∈ Ω0

supθ∈Ω0{Πφ(θ)} = supθ∈Ω0{E[φ(X)]}

3. Level: A test φ has level α if its size is less than or equal to α

4. Uniformly most powerful (UMP): A test is UMP level α if it is the test with smallest Type II error/highest
power among all level α tests

Πφ(θ) = supφ′,levelα{Πφ′(θ)} for all θ ∈ Ω1

Two-point Test (H0 : θ = θ0;H1 : θ = θ1)

• Neyman-Pearson Theorem: The most powerful level α test for the two-point hypothesis is

φ(x) =


1, λ(x) = f1(x)

f0(x) > c

0, λ(x) < c

δ(x) λ(x)

where c and δ(x) are chosen s.t. Eθ0 [φ(X)] = α.

One-sided Test (H0 : θ = θ0;H1 : θ > θ0 or H0 : θ ≤ θ0;H1 : θ > θ0)

• UMP Existence Theorem: If fθ(·) is MLR in T , then the UMP level α test for a one-sided hypothesis is

φ(x) =


1, t > cα

0, t < cα

δα t = cα

where cα and δα are chosen s.t. Eθ0 [φ(T )] = α.

Note: fθ(·) is MLR in some T = T (x) if fθ1 (x)
fθ0 (x) = g(T (x)) increases with T for all θ0 < θ1 ∈ Ω.

Two-sided Test (H0 : θ ∈ Ω0;H1 : θ ∈ Ω1 = Ω/Ω0) Note: Be sure to plug in the MLE estimates to calculate
λ(x)

• If Ω0 and Ω1 are uniformly or pointwise separated, the recommended test is

φ(x) =

1, λ(x) =
fθ̂0

(x)
fθ̂1

(x) < 1

0, λ(x) ≥ 1

• If Ω0,Ω ∈ Rp, dim(Ω) = k − r and dim(Ω0) = k − r − s then the recommended level α test is

φ(x) =
{

1, − 2logλ(x) < χ2
s,1−α

0, − 2logλ(x) > χ2
s,1−α

because, by Wilk’s Theorem, −2logλ(x)→d χ2
s under the null hypothesis.
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